
Context-aware Automatic
Video Screen Manipulation Using Trajectory Tracking

HyungJun Yoon
20217044

Seungjoo Lee
20160479

Abstract
Numerous people watch videos through monitor or smart-
phone screen. We point out the limitations of automatic
screen manipulation according to the viewer’s physical con-
text when watching video through monitor. And to provide a
better experience for video viewers, we present a service with
context-aware 1) automatic screen size adjustment, 2) auto-
matic screen rotation, and 3) automatic video switch between
devices. We first show the improvement in trajectory tracking
through hardware adjustment and integration error reduction,
which leads to the improvement of the performance of our
whole system. Then we describe the architecture of our sys-
tem, consisting of integration of trajectory tracking, python
client, web client, and mobile client. The working system is
demonstrated through the linked video in the report.

1 Introduction

These days, a lot of people watch video through web-based
platforms like Youtube or Netflix. Youtube have reported
that the total number of hours people watch video in a day
is 1 billion [6]. The main physical medium through which
people watch these videos are monitors and screens of mobile
devices. In order to allow users to have a better experience
in watching a video, video screen interfaces have provided
various functionalities within the mediums. Users can reduce
or increase the size of the video, and can also rotate the video
to a desired angle according to their preference.

Representative screen manipulation usages can be listed as
follows. First, when users stay close to the screen, users may
prefer a smaller screen for higher resolution and to display
Overview Beside Details (OBD) [3], such as comments, on the
screen together. On the other side, if the users get far from the
screen, they usually prefer larger size since the content of the
video in a small size is not enough to show the contents in a
far distance. Second, when the direction of vision is changed,
such as when people lie down, users expect the screen to
be aligned with the direction of their vision. Finally, people

don’t watch video on only one device. In a situation where
people move from place to place while watching videos on
monitor, people mainly resume the same contents on their
mobile phone, and this inter-device video switch also falls
under screen manipulation.

Previously, these functions were usually set manually by ac-
tive users. However, we assert that the aforementioned "user’s
preference" can be measured through sensors and that the
screen can be passively manipulated through the measured
context. With the insight, we propose a video screen manipula-
tion application which automatically fits the screen according
to the user context measured through an Arduino sensor. First,
a sensor device is attached on a user’s head. Since the required
functionalities of the sensor are Bluetooth and IMU sensing,
we expect that the sensor can be attached in the form of smart
device, such as smart glasses, without inconvenience to users.
The sensor measures the location and head orientation of the
user in real time. The measured values are used for inferring
the context of the user: how far the user is staying from the
screen, the direction of the user’s vision, and what device the
user is focusing on. Based on the inferred context, our appli-
cation decides on what device and in what form the video
should be played. All communications between the sensor
and screening devices are done by Bluetooth, and the video
is manipulated through chrome and android API on monitor
and phone, respectively. In the following sections we cover
more detailed explanation.

2 Implementation

As shown in the Figure 1, our system is composed of clients
that play video by communicating with sensors for context
recognition and exchanging information in real time via Blue-
tooth. Context recognition through trajectory tracking is the
most important part of our system. Since it is our big goal to
precisely match the user’s preference with the inferred con-
text, we improve the performance of the sensor’s location
and orientation tracking through various technical improve-
ments. Section 2.1 covers this in detail. Next, to manipulate

1



Figure 1: Service Overview

the screen of the actual video interface in the client, we imple-
ment the required functions in the web and app. We deal with
front-end and back-end designs used in web and app clients,
and communication between clients and sensors in section
2.2.

2.1 Trajectory tracking
In this subsection, we explain how we improved the trajectory
tracking performance.

2.1.1 Hardware adjustment

• Increasing sampling rate: Since the default sampling
rate of the Arduino’s LMS9DS1 library [1] is too low
(119Hz), we increased the sampling rate to 476Hz by
changing the CTRL_REG1_G register [4] to capture the
detailed movement.

• FIFO mode: If we use the most recent produced sen-
sor value, we miss sensor values that are produced
during calculation since the calculation for the trajec-
tory tracking is usually slower than the sampling fre-
quency. We enabled FIFO mode to save all produced
sensor values to hardware queue by the library function
set_continuous_mode() [1].

• Average pooling from FIFO queue: If we use one
sample at a time, the FIFO queue will grow because
of slow calculation. Then, we cannot achieve real-time
trajectory tracking and we even lose some sensor values

due to fixed FIFO queue size [4]. Thus, we revised the
library function read_acceleration() to return the
average value of all sensor values in FIFO queue.

2.1.2 Reducing integration error

The baseline code integrates a velocity from a accelera-
tion value using the most recent sensor value. However, this
method introduces integration error. Figure 2 shows three
integration methods. Figure 2a is correct integration when the
sampling frequency is infinite. If we use current acceleration
value like figure 2b, the result is bigger than the actual result.

Thus, we use the average of the previous and current ac-
celeration values like figure 2c. This method can reduce the
integration error with the assumption that the acceleration
changes linearly in short time. Note that we also apply this
integration scheme when integrates velocity to position.

2.1.3 Orientation tracking

To track the orientation, we integrate angular velocity from a
gyroscope in LSM9DS1 [4]. For the gyroscope, We use the
same hardware adjustments introduced in section 2.1.1.

Additionally, we calibrate the gyroscope beforehand. We
measure the gyroscope value 200 times in steady state and
average them. We subtract the average value when we use the
gyroscope.

2



(a) Correct integra-
tion

(b) Wrong integra-
tion

(c) Adjusted integra-
tion

Figure 2: Three integration methods

2.1.4 Removing gravity in real-time

Our mobile service’s usage scenario includes rotating and
moving the device at the same time. To enable it, we should
remove the gravity in real-time since the accelerometer cannot
distinguish linear acceleration from gravity.

We calculate the rotated gravity in the arduino’s coordina-
tion from rotation matrix R [5] and the calculated orientation
(section 2.1.3) as shown equation below.

R−1 [0 0 1
]T

=

−cos(α)sin(β)cos(γ)+ sin(α)sin(γ)
sin(α)sin(β)sin(γ)+ cos(α)sin(γ)

cos(β)cos(γ)



2.2 Service
2.2.1 Python client

The Python client is placed within the device that plays a
video through a web-based interface through a monitor. The
Python client has two main roles. First, as a central device
of Bluetooth, the client receives data from the smartphone
and Arduino sensor through Bluetooth. It receives trajectory
data from the sensor and the status of the video being played
from the mobile client. Next, it serves to create a summary of
the user context based on the transmitted data. The generated
summary is delivered to a database available to web clients
and directly to mobile clients.

2.2.2 Web client

The web client executes a script that directly manipulates
the video based on the generated context summary. This is
implemented through a chrome extension script that manip-
ulates the video player in YouTube in various ways through
javascript injection. The Chrome extension cannot commu-
nicate directly with the Python script, so it uses Firebase
Realtime Databse in the form of a 1-sized queue to deliver
data to the Python client through REST API.

2.2.3 Mobile client

The mobile client executes a script that plays a video through
a WebView within the Android app. Information related to the

(a) Distance tracking evaluation
setting

(b) Orientation tracking evalua-
tion setting

Figure 3: Evaluation settings

state of the video is transmitted to the Python client through
Bluetooth along with sensor data. Whether or not the video is
played is judged according to the context summary received
from the Python client. This is for real-time device switching
according to the user’s focus.

3 Evaluation

We evaluate the trajectory tracking and mobile service at the
same time by measuring the performance of distance tracking,
orientation tracking, and gravity cancellation. We believe that
it is sufficient to evaluate the mobile service with these three
evaluations because the mobile service solely depends on the
trajectory tracking performance.

3.1 Distance tracking
We evaluate the distance tracking by moving the arduino in
straight line as shown in figure 3a. We moved the arduino to
two different distances (15cm, 30cm). We also tested with
two different axes (Y axis, XY axis) to test robustness of the
distance tracking. We tried 20 times for each combination
of distance and axis, and report mean absoluate error with
standard deviation.

Figure 4a shows the performance in mean absolute error.
The error was about 10% to the total distance. When the dis-
tance increases, the error increases as well. We also confirmed
that the error is same for different axes.

3.2 Orientation tracking
Orientation tracking performance is evaluated by rotating the
arduino and changing roll as shown in figure 3b. We tried
changing roll 90 and 180 degrees, 20 times each. We evaluated
only roll without loss of generality since roll, yaw, pitch are
calculated in the same way.

3



(a) Distance tracking (b) Orientation tracking

(c) Gravity cancellation with ro-
tation

(d) Gravity cancellation in
straight line

Figure 4: Evaluation results

Figure 4b shows the mean absolute error in degree. The er-
ror was about 10◦ when we tested for 90◦. The error increases
when we tested for larger degree.

3.3 Gravity cancellation
We evaluate the gravity cancellation performance by combin-
ing rotation and distance tracking. In specific, we moved the
arduino to following 3 steps for 20 times. 1) Rotate the roll
+90◦, 2) Rotate the roll -90◦, and 3) Move 30cm to Y axis. We
also evaluated moving the arduino just in straight line 30cm
to 2 different axes (X, XY axis) for 20 times.

Figure 4c shows mean absolute error of rotation and mov-
ing. The pink one is the baseline performance that cancels the
gravity with offset-based method. The skyblue one cancels
the gravity in real-time with the proposed method. We can
confirm that our method effectively cnacels the gravity in
real-time and reduces error greatly.

Figure 4d shows the mean absolute error of moving the
arduino in straight line. It can be seen that even when moving
in a straight line, the error is reduced with our method. This is
because the hand is shaking slightly and changes the gravity
in the arduino’s coordination.

3.4 Application feasibility test & Demo
Totally, our implemented system involves seven basic func-
tionalities for automatic context-aware screen manipulation.

• Scaling up when the user gets far from the monitor than
the threshold

• Scaling down when the user gets close to the monitor
than the threshold

• Rotating the screen to left when the user’s head rotates
to left

• Rotating the screen to right when the user’s head rotates
to right

• Rotating the screen to the original direction as the user’s
head gets to the original rotation.

• Switching the playing device to smartphone when user’s
head is directing smartphone

• Switching the playing device to monitor when user’s
head is directing monitor

To verify that our system works with all of the listed
functionalities, we conducted a simple feasibility test, by
performing all situations corresponding to the functional-
ities. Our conducted experiment is shown in the demo
video(https://youtu.be/a_yV5p-jiIo). As a result, our system
worked for all scenarios with the expected manipulation func-
tionality.

4 Discussion & Challenge

• Fixation of smartphone location: We fixed the smart-
phone location due to great location tracking error. Since
the android’s sensor value is gathered by eventlistener, it
was hard to get the sensor value in desired sampling fre-
quency. We believe that we can track the smarpthone’s
location with RF-based methods [7], and not fix the lo-
cation.

• Using arduino as peripheral device: Currently, the
arduino and smartphone are set as peripheral device and
the laptop is set as central device. We should set the
arduino as central device to enable more diverse usage
scenario, such as taking the phone to outside. Making
the laptop peripheral was hard due to limitation of Bleak
library [2]. We believe this limitation can be solved
with other libraries that enable the laptop playing the
peripheral role.

Roles

• Part 1. trajectory tracking

– HJ : reducing algorithmic error (integration error)

– SJ : hardware adjustment, gravity cancelling, ori-
entation tracking

• Part 2. mobile service

– HJ : implementing summary generation & system
architecture, youtube screen manipulation function-
ality (chrome extension)

– SJ : bluetooth connection & data transfer among
devices (arduino, phone, PC)

4

https://youtu.be/a_yV5p-jiIo


Acknowledgments

We appreciate the supervision of Professor Song Min Kim
who provided knowledge about sensors and wireless com-
munication through high-quality classes, and guided us to
proceed with valuable projects.

References

[1] Arduino. Arduino lsm9ds1 library. Retrieved De-
cember 17, 2021 from https://www.arduino.cc/en/
Reference/ArduinoLSM9DS1.

[2] Bleak. Bleak library. Retrieved December 19, 2021 from
https://bleak.readthedocs.io/en/latest/.

[3] Kasper Hornbæk and Erik Frøkjær. Reading of elec-
tronic documents: The usability of linear, fisheye, and
overview+detail interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’01, page 293–300, New York, NY, USA, 2001. As-
sociation for Computing Machinery.

[4] STMicroelectronics. Lsm9ds1 datasheet. Re-
trieved December 17, 2021 from https://www.st.com/
resource/en/datasheet/lsm9ds1.pdf.

[5] Wikepedia. Rotation matrix. Retrieved Decem-
ber 18, 2021 from https://en.wikipedia.org/wiki/
Rotation_matrix.

[6] Youtube. Everyday people watch 1 billion hours of videos
on youtube and generate billions of views. https://www.
youtube.com/intl/en-GB/about/press/, 2019.

[7] Faheem Zafari, Athanasios Gkelias, and Kin K. Leung.
A survey of indoor localization systems and technologies.
IEEE Communications Surveys Tutorials, 21(3):2568–
2599, 2019.

5

https://www.arduino.cc/en/Reference/ArduinoLSM9DS1
https://www.arduino.cc/en/Reference/ArduinoLSM9DS1
https://bleak.readthedocs.io/en/latest/
https://www.st.com/resource/en/datasheet/lsm9ds1.pdf
https://www.st.com/resource/en/datasheet/lsm9ds1.pdf
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://www.youtube.com/intl/en-GB/about/press/
https://www.youtube.com/intl/en-GB/about/press/

	Introduction
	Implementation
	Trajectory tracking
	Hardware adjustment
	Reducing integration error
	Orientation tracking
	Removing gravity in real-time

	Service
	Python client
	Web client
	Mobile client


	Evaluation
	Distance tracking
	Orientation tracking
	Gravity cancellation
	Application feasibility test & Demo

	Discussion & Challenge

